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Abstract - Reduction of the indole-l-carboxaldehydes (la -1f)
with borane /THF gives the l-methylindoles §4; in 42-91% yields
together with the di(indolylmethyl)ethers E » the indolyl-
methyl indolines (7), the unsymmetric ether (10) and the
indolenine (11) as the minor products, except 7a. This appears
to be the first report on the formation of symmetric ethers in
the borane/ THF reduction of an oxygen function. The formation
of 7a and 7b from la and 1lb implies that electrophilic substi~
tutTon takes place primarIly at position 3 of 3-substituted
indoles. lc - 1f did not form the corresponding 7 probably
because of steric hindrance. These results are discussed in
relation to the mechanisms of borane/THF reduction, origin of
the different products and electrophilic substitution in 3-
substituted indoles.

Reduction of indole-l-ketones with borane complexes or other reducing agents is
not always successful and not well est:a):>lished.2'9 Earlier, we reported for the
first time the successful reduction of indole-l-carboxaldehydes, i.e. lg and ‘Lh,
with borane/THF.lo Since our results were limited and not sufficient to draw
any firm conclusion}o and since no further work in this area seems to have
appeared in the literature, and since indole-l-carboxaldehydes cannot be reduced
with any other reagents,lo'11 we considered it worthwhile to carry out the reduc-
tion of additional indole-l-carboxaldehydes with borane/THF to study the genera-
lity, scope and limitations of the reaction, as well as, to throw further light
on the mechanisms of both borane/THF reduction and electrophilic substitution in
3-substituted indoles, particularly because there exist some records in the
literature in favour of direct electrophilic substitution at position 2 of the
latter.l2

Six indole-l-carboxaldehydes (la -~ 1f) were reduced with excess borane/THF, and
in each case, more than one product was obtained, the l-methylindoles (5) being
the major product, except in the case of la which gave the dimer (7a) in slightly
greater proportion (Table 1). A related dimer (7b) was also obtained from lb as
the minor product. The new class of symmetric ethers (8b, 8d -8f), the unsymme-
tric ether (10) and the indolenine (ll) were also obtained as the other minor
products.
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SCHEME - Mechanisms of Borane / THF Reduction of Indole-1-
carboxaldehydes (1)
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It may be noticed that ether formation took place when 1 had a phenyl group

at position 2 or 3 or both (e.g. lb, ld-1f) except lc (vide infra), but no ether
was formed when 1 had only an alkyl group at position 3 (e.g. la and lglo) or at
positions 2 and 3 (e.g. ;ﬂlo).

The mechanism of origin of 4 and 7 is similar to that reported earliarlo, but
that of 7 may also involve electrophilic substitution of 2 by 3 (Scheme I). A
number of mechanisms can be conceived for the formation of 8, such as, nucleo-
philic attack on 2 by 5 (presumably formed during MeOH treatment), nucleophilic
attack by 2 on 3, catalytic effect of BH; or BFsa. The observation that ether

formation was apparently dependent on the nature of the substituents (vide

3piborane generated externally from LiAlH, or NaBH, and BF,.0Et is contaminated
with tigcos of BF3 which can change the 3ourse of 'a reactgon ba its catalytic
effect!>, As both borane/THF and BF3 are known to cleave ethersl?, the possi-
bility of their catalytic effect on the formation of 8 is probably remote.
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supra) may provide some support to the first possibility. A methyl substituent
at position 2 or 3 or both increases electron density on the nitrogen atom and
enhances the rate of solvolysis of 2 to 3. When MeOH was-added, very little or
none of 2 was possibly left behind to give 5 to form 8. On the other hand, a
phenyl substituent at position 2 or 3 cannot increase electron density on the
nitrogen atom as effectively as a methyl group, it rather reduces it}s and
renders solvolysis of 2 less favourable and much slower. When MeOH was added,
some of 2 was possibly still left behind to generate 5 and lead to 8.

Although pyridine/borane in CF3COOH was reported to reduce aldehydes to symme-
tric ethers, and to unsymmetric ethers with the combination of alcohols;l6 so far
as we are aware, there is no record in the literature on the formation of any
symmetric ether in the borane/THF reduction of an oxygen function in the absence
of an added acid. It may be mentioned here that we obtained earlier the unsymme-
tric ether (12) from a related reaction,l7 and 10 probably arose as a result of
competitive nucleophilic attack by MeOH on 2e or 3e. The involvement of added
alcohols in the formation of unsymmetric ethersl6TI7
sed mechanism for the origin of 8.

11 probably originated via 2¢ or 5¢ under the influence of base by hydrolytic
cleavage and autoxidation} since in this particular case, the crude product was
treated with aqueous NaHCO3 (Scheme II)b. Moreover, as borane/THF is capable of
reducing imines to amines,10+17,20 it must have arisen after the quenching of the
former with MeOHC.

Another point of interest is the fact that although borane/THF reduction of
.indole derivatives have been reported to yield 1ndolines}28’g we failed to detect
any such indolines in our present work or in our earlier studies on indole—4—‘,l'22
indole-3—,l7’23 indole-2-17 and indole-l-carbonyl derivatives.lo

Finally, the formation of 7 provides unambiguous support to Jackson's theory
of electrophilic substitution in 3-substituted indoles}2a His more recent
findingsle’24 and those of others25 also support his theory.

The indole-l-carboxaldehydes (lc - 1f) bearing a phenyl group at position 2
did not form the corresponding indolylmethyl indolines probably because of steric
hindrance?7

tends to support our propo-

The mass spectral fragmentation pattern of 7 is similar to those reported
10
earlier.

EXPERIMENTAL

Melting points are uncorrected. lH NMR spectra were recorded on a Nicolet NT
200 (200 MHz) or Varian CFT-20 (80 MHz) spectrometer. l13C NMR spectra were obtai-
ned on the latter instrument and are reported in parts per million from Me4Si.
All NMR spectra were recorded in CDCl3, UV spectra in EtOH and IR spectra in KBr
disc, unless otherwise mentioned. 13¢ Assignments which have been made on the
basis of correlation with the spectra of other indoles 8 are supported by the
observation of C~H coupling but only the completely proton-decoupled spectra are
reported. Electron impact mass spectra (EI) were run at 70 eV on a Finnigan 4000
or AEI MS-30 mass spectrometer and chemical ionization mass spectra (CI) on a
Finnigan 4000 machine, and peak positions (m/g) are followed by relative abun-
dances in parentheses. Light petrol indicates ths fraction b.p.60-80°, Diglyme,
tetrahydrofuran (THF) and BF3.0Et2 were purified 9 just before use. Microanalyses
were performed by the staff of the Department.

bConversion of an indoline-3-hydroperoxide to the corresponding indoline-3-0l was
reported to take place in aqueous solution or to be catalyzed by silica gel
The possibility of catalysis by silica gel in our case cannot be ruled out.

“Reduction of 1l with both NaBH, and L A1H421 and the isolation of an indolenine
hydroperoxide from a LiAlH, reéuction are also recorded in the literature.
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General Procedure for the Reduction of the Indole-l-carboxaldehydes (la~- 1lf)
with Borane/THF. The Indole-I-carboxaldehydes (la - 1£)Q (6 mmole) were reduced
with borane/ (30 mmole) following our earlier procedurelO, The crude product
obtained after removal of MeOH was dissolved in CHCl3 (100 ml), washed with
water (3x1Oml), dried (NapSO4) and evaporated to dryness under reduced pressure.
In case of lc, the CHCljz solution of the crude product was washed successively
with aqueous NaHCO, (5%? and Hy0. The residue of the CHCl3 solution was chromato-
graphed on a silica gel column. The remaining part of the procedure is described
separately for each compound mentioning the eluting solvents listed below :
3-Ethyl-l-methylindole (4a) : Light petrol; colourless viscous liquid (11t§0 b.p.
73-73¥75.35 mmﬁg); N max-%log €) : 223 nm (4.50), 289 (3.79); HNMR & : 6.70
(1H, s, 2-5), 6.9~-7.3 (4H, m, 4, 5, 6, ’7-5), 2,70 (2H, q, J= 7Hz, 3-CH,), 6.35
(3H, t, J;)7Hz, 3-CHp-CH3), 3.58 (3H, s, N-CH3); picrate, m.p.98-99° (I{t.3
m,p.97-98%),

3-Ethyl-l-methyl~3- -methyl)indoline (7a) : Light petrol +
AcOEt tl); colourless viscous quid; max (neat): 3040, 1600, 1475, 1270,
750 cm~—l; IH NMR & + 7.42 -7.54 §1H, m, 4'-H), 7.0 - 7.2 (4H, m, 5',6',7', 7-H),
6.5-6.72 (3H, m, 4,5,6-H), 6.39 (lH, s, 2'-H), 4.08 (2H, s, N-CHy), 3.17 (1lH, d,
Jag = 9.2 Hz, 2-Hp), 2.94 (1H, d, J E = 9.2 Hz, 2-Hp), 2.65 (3H, s, N-CH3), 2.65
(QH, q, J =7.45 Hz, 3'-CHy), 1.76 ? H, q, J = 7.1 Hz, 3-052%, 1.20 (3H, t, J =
7.45 Hz, 3'-CHy-CH3), 0.79 (3H, t, J = 7.1 Hz, 3-CH,-CH3); 13C NMR ppm : 35.47
(N-CH3), 52.14 (g-g), 50.%2 (C-3), 18.08 (3-cn+%), 8,92 3-cu-»%-gu ), 123.51 (C-4),
117757 (¢-5), 12871 (C-6), 107.21 (c-7), 132.% (C-8), 152.81 C~9§, 62.67 (N-CHp)
125.71 {c-2'), 117.03 gc-s'), 118.78 (c-4'), 121.17 (c-5'), 118.59 (c-6'),
109.42 (¢-7'), 127.28 (C-8'), 137,92 (€-9'), 27.07 (37-CHp), 14.47 (3'-CHp~CH3);
EI m/e : 318 (M*, 13.9), 160 (100), 159 (37.1%), 158 (8.33), 145 (8.33), 144
(37°5), 132 (11.11), 131 (11.8), 130 (12.15).

l-Methxl-3-gQ§nxlindole $4b) ¢ Light petrol + benzene (9:1); ¢olourless viscous
qu 1t. m.p.62-63°Y); 1,3,5-trinitrobenzene charge transfer complex (from
cyclohexane), dark red needles, m.p.95-97°; lH NMR ¢ : 9.19 (3H, s, protons of
1,3,5-trinitrobenzene), 7.61 - 7.85 (1lH, m, 4-H), 7.03 - 7.59 (9H, m, Ar-H),

3.75 (3H, s, N-CH,).

l-Methxl-3-%henxl-3-(3'-phenylindolyl-l'-methyl)indoline (7b) : Light petrol +

benzene (l:1); white solid, resolved by fractional crystalilzation from a
mixture of light petrol and benzene (9:1) into 7b and 8b. 7b : white needles,
m.p.149%; ». max (loge 1 : 236 nm (4,38), 262 (4.26), 283 (4.18); Y max : 3000,
1600, 1460, 760 cm~i; lH NMR § : 7.84 - 7,88 (1H, m, 4'=H), 7.03 -~ 7.63 (15H,
m, Ar-H), 6.55 - 6,74 (34, m, 4,5,6-H), 4.70 (2H, s, N-c¥2$, 3.53 (2H, s, 2-H),
2.73 (3H, s, N-CH g; EI m/e : 414 (MF, 2.01;, 209 (16.427, 208 (100), 207
537.33), 206 29. 193 (20.22), 178 (1.78); CI m/e : 415 (100, MH*}, 208
84.77), 207 (16.65). (Found : C, 86.90; H, 6.32; N, 6.76. CyoHycN, requires :
Cc, 86.81; H, 6.12; N, 6.58%).

The Symmetric Ether (8b) : colourless needles, m.p.163%; Amax (loge¢ ): 235 nm
rz.zsi, EEV'YZT??TT 293 (4.16); < max : 1600, 1463, 1447, 1350, 1200, 1045, 900,
730, 690 cm™*; ‘H NMR d: 7.94 - 7.98 (2H, dd, J = 9 and 1.9 Hz, 4-HS, 7.63 -
7.67 (2H, dd, J = 9 and 1.9 Hz, 7-H), 7.42 - 7.52 (4H, m, 5, 6-H), 7.27 - 7.35
(10H, m, Ar-H), 7.24 (2H, s, 2-H), 5.49 (4H, s, N-CH,0); EI m/e : 428 (MY, 2.07)
224 (3.02), 223 (27.33), 207 (18.19),.206 (100), 193 (57.78), 192 (11.56), 178
54.87) 165 (23.20); CI m/e : 429 (MM, 26.50), 399 (20.25), 224 (31.48), 208
13.18%, 206 (100).

1,3-Dimethyl-2-phenylindole (4c) : Light petrol + benzene (4:1); white needles,
m.p.699 (1it.3Z2 m.p. ; THNMR & : 7.10-7.71 (9H, m, Ar-H), 3.58 (3H, s, N-CHj)
2.27 (3H, s, 3-CH,).

3-Hydroxy~3-me thyl-2-phenyl-3H~indole (11) : Benzene; white needles, m.p.147°
[11t.333,5 m.p.1450); IH NMRS30,¢ 3: 8.0 (2H, dd, J = 9 and 2 Hz, 2', 6'-H),

7.2-7.4 (7H, m, Ar-H), 1.48 (3H, s, 3-CH,), 3.63 (lH, s, 3-0H); EI m/e : 223
§M+, 100), 222 (43.9), 209 (22.21), 208 ?94.57), 146 (45.61), 105 (98754), 104
29.35). (Found : C, 81.01; H, 5.84; N, 6.00. C;gH}3NO requires : C, 80.69;

H, 5.87; N, 6.28%).

3-Ethyl-l-methyl-2-phenylindole (4d) : Light petrol; colourless oil; 13C NMR opm:
30.56 (NCH3), 137.1§ (C-2), 115.2% (C-3), 118,92 (C-4), 121.48 (C-5), 118.92
(c-6), 109.2 (c-7), 127.39 (c-8), 137.16 (C-9), 132.18 (c-1'), 1%8.17 (C-2' and
C=6'), 130.44 {C-3' and C~5'), 127.72 (c-47), 17.79 {3-CHy), 15.88 (3-C -CH3);
l,3,5-trinit{obenzene charge transfer complex, dark red needles (from MeDHJ,
m.p.81-82%; lH NMR & : 9.25 (3H, s, protons of 1,3,5-trinitrobenzene), 7.08-7.57
(9H, m, Ar-H), 3.55 (3H, s, N—Cﬂa), 2.69 (2H, q, J = 7.4 Hz, 3-CHp), 1.20 (3H,

t, J = 7.4 Hz, 3-CH,-CHj).

dPtepared by the procedure described in ref.27b.
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The Symmetric Ether (8d) : Light petrol and benzene (7:3); white needles (from
1ight petrol), m.p.160%; Amax (log € ) : 238 nm £4.55), 294 (4.42); ¥ max :
2960, 1600, 1465, 1360, 1120, 1020, 1010, 745 cm~i; 1H NMR § : 7.60-7.65 (2H, m,
4-H), 7.14-7.38 (16H, m, Ar-H), 5.23 (4H, s, N-CHp=0), 2.69 (4H, q, J = 7.5 Hz,
3-CH,), 1.19 (6H, t, J = 7.5 Hz, 3-CH%-CH ); EI m/e : 484 (M*+, 2.54), 251 (0.38),
235 121.55), 234’ (100), 221 (0.59), 219 (3.27), 218 (13.56), 217 (5.17), 206
(11.79), 205 (21.94), 204 (13.77).

1-Methyl-2,3-diphenylindole (4e). : Light petrol ; colourless hairv needles,
mep. 3% m.p.137-138%7; 1H NMR & : 7.69-%.82 (1H, m, 4-H), 7.19~7.31 (13H,
m, Ar-H), 3.65 (3H, s, N-CH,).

The Symmetric Ether (8e) : Light petrol + benzene (6:1); white solid, resolved by
fractional crystallization from EtOH into 8e and 10. 8e : silky white needles,
m.p.1%53-154%; Amax (log € ): 239 nm (4.667, 297 (3.4%); 7 max : 1600, 1460, 1330,
1230, 1145, 1030, 760, 690 cm~1l; IH NMR § : 7.7-7.85 (2H, m, 4-H), 7.1-7.% (26H,
m, Ar-H), 5.34 (4H, s, N-CHy-0); 13C NMR ppm : 71.48 (N—CHg-O), 120.07 (c-4),
123,17 (¢~5), 121.42 (C~-6), 110.12 (c-7), 128.31 (c-2', T-6' and c-4*), T30.14
(C=-3' and C-5'), 128.17 (C-4'), 128.39 (C-2" and C=6"), I31.36 (C-3* and C-3")¢;
EI m/e : 580 gM‘, 1.49), 299 (1.76), 2837 (24.87), 282 (100), 281 (7.28), 280
(11777), 269 (13.85), 267 (11.47), 254 (4.75). (Found : C, 86.58; H, 5.39; N,
4.65. C42H3oNoO requires: C, 86.87; H, 5.55; N, 4.82%).

The Unsymmetric Methyl Ether (10) : white needles, m.p.l21°; Amax (log ¢ ) :

337 nﬁ'fd.sls, 293 (3.66); » max : 1600, 1450, 1230, 1120, 1075, 790, 690 cm~};
HNMR 8§ ¢ 7.77 (14, d, J = 7.8 Hz, 4-H), 7.57 (lH, d, J = 7.8 Hz, 7-5), 7.17 -

7.37 (12H, m, Ar-H), 5.38 (2H, N-CHo-OJ, 3.25 (3H, s, O-CH3); EI m/e : 313 (M%,
100), 283" (16.48)- 582 (46.63), 261°(3.43), 280 (5.93), 283 (M-ethyTene oxide,

21.54), 268 (14.4), 267 (28.04), 254 (1.48%. (Found : C, 84.00; H, 5.98; N, 4.45.
CooHjgNO requires : C, 84.31; H, 6.11; N, 4.47%).

1,5~Dimethyl-2,3-diphenylindole (55; : Light petrgl + benzene (9:1); colourless
ttxes {from Ifgﬁf petrol + benzene), m.p.127-128%; Ama{ (log 6 )¢ 235 nm (4.26),
305 (3.98); “max : 1600, 1500, 1480, 1370, 720, 695 cm~*; 1H NMR § : 6.v8-7.49
(13H, m, Ar-H), 3.54 (3H, s, N-CHj), 2.38 (3H, s, 5-CH3). (Found : N, 4.63.
CyoH gN requires; N, 4,71%).

The Symmetric Ether (8f) : Light petrol + benzene (1:1); silky white needles [from
BET?S%E%E‘ETEE?‘TBTp.160-12003], m.p.181-182°%; Amax (log & ): 237 nm (4.65), 301
(4.45); 9 max : 3020, 1600, 1465, 1100, 1030, 790, 700 cm'1; lIH NMR 6 : 7.00-7.51
{26H, m, Ar-H), 5.35 (4H, s, N-C#g-o), 2.46 (6H, s, CH3); EI m/e : 608 (M*, 1.05),
313 (68.75), 297 (100), 296 (56.75), 295 (11,21}, 294 (18.05), 284 (80.00), 283
(68.00), 282 (25.00), 281 (15.00), 268 (3.15),
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